Learning causal DAGs using
adaptive interventions
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Suppose we are given some data and we want
to discover causal relationships between them

Sample 1 0.22 0.04 0.84 0.48 0.98 0.82
Sample 2 0.87 0.17 0.61 0.67 0.67 0.23
Sample 3 0.55 0.54 0.67 0.86 0.93 0.23

Sample M 0.12 0.95 0.79 0.47 0.05 0.92
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One possible way: use graphical modelling
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A directed acyclic graphs (DAG) representation
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A directed acyclic graphs (DAG) representation
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Sample 1 0.22 0.84 0.98 0.82
Sample 2 0.87 0.17 0.61 0.67 0.67 0.23
Sample 3 0.55 0.54 0.67 0.86 0.93 0.23
Sample M 0.12 0.95 0.79 0.47 0.05 0.92

X, = f1(e1) Structural
X, = f,(X1,€) equation
X3 = f3(X1,X5,X4,€3) | model (SEM)
X4 = fa(X1, €4)
Xs = f5(X3, X4, €5)
Xe = f6(X2, €6)
€1, €y, €3, €4, €5, €¢ iINdependent noise

Using the Bayesian network, one can decompose the joint distribution as follows:
Pr[Xi] - PrXz| X1] - Pr(X4| X1] - Pr{Xs| X1, X5, X4] - Pr[Xs| X3, X4] - Pr[Xe| X]



Conditional independence (Cl) tests

* A standard way (under some causal assumptions*) tO recover graph
structure from data is to perform Cl tests

* e.g. PC (Peter—CIa rk) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]
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Conditional independence (Cl) tests
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Conditional independence (Cl) tests

* A standard way (under some causal assumptions*) tO recover graph
structure from data is to perform Cl tests

* e.g. PC (Peter—CIa rk) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

Essential graph E(G™)
° Partially oriented G*

Q that represents the
°'° ° equivalence class [G™]

O

What are these kinds of edges?
What makes them special? (Recover up to an

equivalence class)

Cl tests
r skeleton

* Orient some edges

Get Samples Samplel 022

Sample 2 0.87 0.17 0.61 0.67 0.67 0.23
Sample 3 0.55 0.54 0.67 0.86 0.93 0.23 °

*See backup slides if time permits



Unshielded colliders / v-structures

(==
D=
OO

XNY
XN Z
Y /7
XNY|Z
X1 Z|Y
Y L Z|X

XNY
X1 Z
Y )L Z
XNY|Z
XNZ|Y
Y L Z|X



Toy example

lIYesll / IINOII

. _ Lazy?
binary variables

Laziness affects
whether student
studied or not

Chance of “A” depends on whether student
studied and whether student is smart



Toy example
Lazy J{”A”

“Yog” / “No” Lazy students tend to NOT get “A”

. . Lazy? (because they usually don’t study)
binary variables

Laziness affects
whether student
studied or not

Chance of “A” depends on whether student
studied and whether student is smart



Toy example

lIYeSII / IINOII

_ _ Lazy?
binary variables

Laziness affects
whether student
studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Lazy }1/ “A”

Lazy students tend to NOT get “A”
(because they usually don’t study)

Lazy Il “A” | Study

If we knew whether student studied, the
laziness of the student is irrelevant to the grade



Toy example

lIYeSII / IINOII

_ _ Lazy?
binary variables

Laziness affects
whether student
studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Lazy }1/ “A”

Lazy students tend to NOT get “A”
(because they usually don’t study)

Lazy Il “A” | Study

If we knew whether student studied, the
laziness of the student is irrelevant to the grade

Lazy Il Smart

Modelling assumption: Smart students are
equally likely to be lazy or hard working



Toy example

lIYeSII / IINOII

_ _ Lazy?
binary variables

Laziness affects
whether student
studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Lazy }1/ “A”

Lazy students tend to NOT get “A”
(because they usually don’t study)

Lazy Il “A” | Study

If we knew whether student studied, the
laziness of the student is irrelevant to the grade

Lazy Il Smart

Modelling assumption: Smart students are
equally likely to be lazy or hard working

Lazyill Smart | “A”

Roughly speaking, “A” if student smart OR studied.
e.g. if NOT smart, then LIKELY to have studied,
which implies student was UNLIKELY to be lazy



Two equivalent causal models

a

"X =6 X=Xt e
'X2=a°X1+62 .XZZEZ
ce; ~N(0,1) 1

€1 NN(O'a2+1)

e e, ~ N(0,1)
i e e, ~N(0,a? +1)

Data from both are fully characterized by covariance matrix Lll azc_ll_ 1]

Example from: https://youtu.be/rE6IMfSkOU0?t=849. See https://github.com/csquires/6.5091-causality for full course



https://youtu.be/rE6IMfSkOU0?t=849
https://github.com/csquires/6.S091-causality

How to get around non-
identifiability issues from
observational data?

1. Make assumptions about
functional form of SEM
* e.g. Non-Gaussian noise
2. Perform interventions
(more on this later)
e e.g.randomized controlled trials



https://youtu.be/rE6IMfSkOU0?t=849
https://github.com/csquires/6.S091-causality

Markov Equivalence Class (MEC)

* Two DAGs are Markov equivalent if they encode the same Cl relations

. Theorem [Verma, Pearl 1990; Andersson, Madigan, Perlman 1997]
G and G’ are Markov equivalent if and only if
1) G and G’ have the same skeleton
2) G and G’ have the same v-structures

» skeleton and v-structures of DAG G ™ earlier
OS (G
P BT
O ()

* Forany DAG G*, we use [G"] to denote its MEC



Essential graphs E(G™)

* Used to graphically represent a MEC [G™]
* DAGs in same MEC have the same essential graph
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Essential graphs E(G™)

* Used to graphically represent a MEC [G™]
* DAGs in same MEC have the same essential graph

 Partially oriented DAG
e X ~Yisorientedas X — Y if all DAGs in the MEC agree
e X ~ Y isunoriented arc if there exists disagreement
3G, G, € [G*]in MECsuchthat X - Y inGyand X « Y in G,.
* How to compute essential graph £(G™) of G*?
1. Look at skeleton of G*
2. Orient v-structuresin G*
3. Apply Meek rules (veek 1995]



Meek rules e

* Sound and complete
(with respect to arc orientations with acyclic completion)

)

We won’t miss out on
any information

We won’t wrongly
orient arcs




Meek rules e

* Sound and complete
(with respect to arc orientations with acyclic completion)

© re © (€ G R4 0
~ N\,
@——b  @—) | @—b) 0
If b « aq, If b « a, If b « a, then unoriented arcs would
then v-structure then cycle have been oriented in the same way in

all DAGs within the MEC (via R2)

* Converge in polynomial time (wiensbst, Bannach, Liskiewicz 2021



Essential graph example

e Use Cl tests: recover skeleton and v-structures
G G @ v @
Lol TN
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Essential graph example
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e Use Cl tests: recover skeleton and v-structures

e




Essential graph example

e Use Cl tests: recover skeleton and v-structures

e Meek R3
e Meek R1

Lol
NN

N,
i



Essential graph example

e Use Cl tests: recover skeleton and v-structures

* Mee
* Mee
* Mee

K R3
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Essential graph example




For this talk...

* Some standard causal assumptions
e Causal sufficiency: no unobserved causal variables
* Faithfulness: 1L in data = 1l in graph
* Oracle access to conditional independencies

» Simplifying assumptions for this talk
* Hard interventions (see next slide)
* Atomic intervention: One vertex per intervention
* Each vertex has unit cost

* Objective
e Minimize total number of vertices intervened

11



For this talk...

We can abstract structure learning as
a graph problem with specialized

causal graph manipulation operations

Goal: Fully recover G*

* Objective
* Minimize total number of vertices intervened

11




Hard interventions

do(X, = x4)

X1 = f1(€1)

X, = f2(X1,€2)

X3 = f3(X1, X2, X4, €3)

Xy = fa(Xq1, €4)

Xs = f5(X3, X4, €5)

Xo = f6(X2,€6)

€1, €, €3, €4, €5, € independent noise

X, = f1(eq)

X, = f2(X1,€2)

X3 = f3(X1, X3, X4, €3)

X, = intervened value x,

X5 = f5(X3, X4, €5)

X = f6(X2, €6)

€1, €, €3, €4, €5, € independent noise
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Hard interventions

do(X, = x4)

X1 = f1(€1)

X, = f2(X1,€2)

X3 = f3(X1, X2, X4, €3)

Xy = fa(Xq1, €4)

Xs = f5(X3, X4, €5)

Xo = f6(X2,€6)

€1, €, €3, €4, €5, € independent noise

X, = f1(eq)

X, = f2(X1,€2)

X3 = f3(X1, X3, X4, €3)

X, = Eat Z apples a day

X5 = f5(X3, X4, €5)

X = f6(X2, €6)

€1, €, €3, €4, €5, € independent noise

12



What can we recover?




What can we recover?




What can we recover?

(Hidden) (What we can see)

Intervening on X, lets
-------------------------- us recover arc directions f=============-sssssssmm—— e
incident to X,




Two classes of interventions

* Non-adaptive

* Given MEC [G "], decide on a single fixed set of
interventions that recovers any possible G* € [G*]

* Need to intervene on a Skel(g(G*))-separating system
[Kocaoglu, Dimakis, Vishwanath 2017]

* Adaptive

* Given MEC [G™],
Decide on first intervention
See outcome

Decide on second intervention
See outcome

14



G _S e p a ratl ﬂ g SySte m [Kocaoglu, Dimakis, Vishwanath 2017]

* Fix an undirected graph G = (V,E)

e AsubsetJ € 2" is a called a G-separating system if

 For every edge {u, v} € E, 3 intervention I € 7 such that
either(uelAvElor(ué&lINvEI])

* i.e. “every edge must be cut”

e Atomic interventions = vertex cover of (¢

15



Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

oo — —©
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Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

X, is hidden
source

O @~ —()

* Meanwhile, adaptive search can act like binary search!
i.e. only O(log n) interventions required
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Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

(@~ —()

Suppose we intervene on X;

* Meanwhile, adaptive search can act like binary search!
i.e. only O(log n) interventions required
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Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

(@~ —O)

Recover incident edges

* Meanwhile, adaptive search can act like binary search!
i.e. only O(log n) interventions required

16



Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

OO @~ —O

Meek R1

* Meanwhile, adaptive search can act like binary search!

i.e. only O(log n) interventions required
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Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

OO @~ —O

Meek R1

* Meanwhile, adaptive search can act like binary search!

i.e. only O(log n) interventions required
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Power of adaptivity

* Path essential graph
* n possible DAGs (pick a source node and orient away)

e G-separating system needs = E‘ € Q(n) vertices

(@~ —()

Progress after intervening on X;
Conclusion: The hidden source must be “on the left side” of X;

* Meanwhile, adaptive search can act like binary search!
i.e. only O(log n) interventions required

16



Problem setup

Identify G*

(D) — owe —

Markov equivalence class of G*

(can be represented by an essential graph)
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Problem setup

Identify G* using interventions

(2) — o —
\ Intervene on v, /

Markov equivalence class of G*

(can be represented by an essential graph)

17



Problem setup

Identify G* using interventions

(D) — ows —

Intervene on v; /

Intervene on v;

Markov equivalence class of G*

(can be represented by an essential graph)
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Problem setup

Identify G* using as few interventions as possible (minimize t)

Markov equivalence class of G*

(D) — owe —

Intervene on v; /

Intervene on v; (can be represented by an essential graph)

17



Verification: A simpler problem
Question:




Verification: A simpler problem
Question:

Let v(G) be the
minimum number of
interventions needed to
answer this question

(can be represented by an essential graph)

(Note: v(G™) is a natural lower

bound for adaptive search)
18



The verification problem

* Given MEC [G"] and some G € [G],
check whether G = G~ using interventions

* Denote the minimum number required by v(G)
* v(G") is lower bound for searching for G* within [G™]

19



The verification problem

* Given MEC [G"] and some G € [G],
check whether G = G~ using interventions

* Denote the minimum number required by v(G)
* v(G") is lower bound for searching for G* within [G™]

* Trivial solution

 Compute minimum vertex cover on all unoriented arcs
of the essential graph £E(G) = £(G™)

* Check if revealed orientations agree with G

* Worst case: {}(n) interventions, e.g. on a line

oo —©

19



What was known
— Maximal clique size

w(G)
1. V(G) 2 [Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]

4/ Number of maximal cliques

[ } < V(G) < n-— [Porwal, Srivastava, Sinha 2022]
6 G n=8 w(G)=3,r=4

1 1 <v(G)

2. 2<v(G) <4

MEC [G"]

20



Characterization via covered edges

Claim: Aset 7 € V is a verifying set for DAG G = (V,E) if
and only if 7 is a minimum vertex cover of the covered
edges [Chickering 1995] of G

* u ~ v is covered edge if they have same parents

oo —©

Our characterization:

O @D —()

X, is source in G

Naive:

21



Characterization via covered edges

Claim: Aset 7 € V is a verifying set for DAG G = (V,E) if
and only if 7 is a minimum vertex cover of the covered
edges [Chickering 1995] of G

* u ~ v is covered edge if they have same parents

Proof sketch:

* (=) Suppose we have a verifying set. Fix any covered edge
u ~ v where neither endpoint intervened. Case analysis that
all 4 Meek rules will not orient u ~ v will not be oriented.

* (&) Suppose we intervened on some minimum vertex cover

of the covered edges. Fix a topological ordering m of vertices.

Argue via induction that any edges belonging to the prefix of
m is will be oriented. T

The overall proof is short (< 1 page in total) and quite subtle.

21



Comparison
— Maximal clique size

] V(G) {w (G) Number of maximal cliques [SMG+20]
!
2. [ } < V(G) <n-—r [PSS22]

n=8 w(G)=3,r=4

1. 1<v(G)
2 2<v(G)<4

We can compute
exact v(G) for any
given G € [G*]

In fact, v(G) € {3,4}
MEC [G™] forany G € [G*] One possible DAG from [G]

22



Efficient computation

* \Wait... minimum vertex cover is NP-

PARTS OF THE ELEPHANT
IN THE ROOM

© John Atkinson, Wrong Hands

reluctance denial ignorance

. diversion
avoidance

silence
awkwardness

frunk

© John Atkinson, Wrong Hands = gocomics.com/wrong-hands « wronghandsl.com

Image credit: https://wronghandsl.com/2018/01/12/parts-of-the-elephant-in-the-room/

nard in generall

23
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Efficient computation

* Wait... minimum vertex cover is NP-hard in general!

PARTS OF THE ELEPHANT
IN THE ROOM

© John Atkinson, Wrong Hands

denial ;
reluctance Ignorance

. diversion
avoidance

silence

awkwardness

frunk

© John Atkinson, Wrong Hands = gocomics.com/wrong-hands « wronghandsl.com

e Claim: Covered edges induce a forest
 Implication: v(G) can be computed exactly via DP

Image credit: https://wronghandsl.com/2018/01/12/parts-of-the-elephant-in-the-room/ 23
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Through the lens of covered edges

* Covered edges cannot have both endpoints as sink
of any maximal clique, sov(G) < n-—r
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* For non-adaptive interventions, we must intervene
on a G-separating system
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Through the lens of covered edges

* For non-adaptive interventions, we must intervene
on a G-separating system
* Two graphs have the same MEC [G*] if and only if there

is a sequence of covered edge reversals that transform
between them [chickering 1995]

() Gy () OO
@;@ o @’@ o @%@ @%@ ®

\/\/U
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Through the lens of covered edges

* For non-adaptive interventions, we must intervene
on a G-separating system

* Two graphs have the same MEC [G*] if and only if there
is a sequence of covered edge reversals that transform
between them [chickering 1995]

* Unoriented in £(G*) = Covered edge in some G € |G*]
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Through the lens of covered edges

* For non-adaptive interventions, we must intervene
on a G-separating system

* Two graphs have the same MEC [G*] if and only if there
is a sequence of covered edge reversals that transform
between them [chickering 1995]

* Unoriented in £(G*) = Covered edge in some G € |G*]

* So, “non-adaptive must cut all unoriented in £(G™)”,
l.e. a G-separating system

24



The search problem

Identify G* using as few interventions as possible (minimize t)

Markov equivalence class of G*

Intervene on v, 7

Intervene on v; (can be represented by an essential graph)

25



The search problem

* Given MEC |G "] and recover G* using interventions
* We know at least v(G ") is necessary

* Prior works only have guarantees for special classes of
graphs: cliques, trees, intersection incomparable, etc.
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The search problem

* Given MEC |G "] and recover G* using interventions
* We know at least v(G ") is necessary
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 Punchline: 0(logn ° v(G*)) interventions suffice
e “Search is almost as easy as verification”
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The search problem

* Given MEC [G™] and recover G* using interventions
* We know at least v(G ") is necessary
* Prior works only have guarantees for special classes of
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The search problem

* Given MEC |G "] and recover G* using interventions
* We know at least v(G ") is necessary

* Prior works only have guarantees for special classes of
graphs: cliques, trees, intersection incomparable, etc.

 Punchline: 0(logn ° v(G*)) interventions suffice
e “Search is almost as easy as verification”
 Algorithm does not even know what v(G*) is!

* Q(logn) is unavoidable when [G™] is a path on n nodes
e v(G*) =1
e “Cannot do better than binary search”

25



The adaptive search algorithm

* Intervene and ignore oriented arcs = Chordal graph.
Handle each connected component (rauser, sinimann 2012, 2014
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The adaptive search algorithm

* Intervene and ignore oriented arcs = Chordal graph.
Handle each connected component (rauser, sinimann 2012, 2014

* For any chordal graph G, one can compute in
polynomial time a clique separator C (Gibert, Rose, Edenbrandt 1984]

e |A|,|B| £ —— ( ), ; Cisaclique,i.e. |C] < w(G)

Graph separator
theorem for
chordal graph
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The adaptive search algorithm

* Intervene and ignore oriented arcs = Chordal graph.
Handle each connected component (rauser, sinimann 2012, 2014

* For any chordal graph G, one can compute in
polynomial time a clique separator C (Gibert, Rose, Edenbrandt 1984]

e |A|,|B| £ —— ( ), ; Cisaclique,i.e. |C] < w(G)

e Algorithm: Fmd cligue separator C, in each component
H; Intervene on all nodes in C,’s; Recurse

e Analysis:
* 0(10g n) rounds suffices « [Gilbert, Rose, Edenbrandt 1984]
. O(V(G*)) per round <« We prove new lower bound on v(G*)

26



A lower bound

Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

Claim: Fix an essential graph and some DAG G in it. Then,

’(G)> > B

connected components
H € after removing oriented arcs

01? | ] ] ] | ] | ] ]
G* RS ” " : ‘ ' ‘
c" :X > :5— ;X > ;X > :5— >! > :5

Lower bound from claim: v(G*) > El =1

But, from our covered edge characterization, we know that v(G*) = ;—l
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A stronger (but not computable) lower bound

Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

Claim: Fix an essential graph and some DAG G in it. Then,

[CSB22]

v(G) >

Essential graph

Orientations
from Z

Remove
oriented arcs

QR
.
.
y
)<

maxXx
atomic

interventions

S1,..,S¢

ANIANSAN

T\ T\ T\' T‘\%

2

connected components

H € after removing oriented arcs
after interventions Sy, ..

v

.y St

N DN

NS

AN

A 4
\

O

O
O
O

27



A stronger (but not computable) lower bound

Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

Claim: Fix an essential graph and some DAG G in it. Then,

T )

atomic 2
interventions connected components
S1,...,.5t H € after removing oriented arcs
after interventions Sy,...,5;

01? | ] ] ] | ] | ] ]
G* RS ” " : ‘ ' ‘
c," ;X > :5— ;X > ;X > :5— >X > :5

3
v(G*) = b‘ +1+:-+1€Q(n)

O
Remove
oriented arcs
e 0 @ @ e 0
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The adaptive search algorithm

* Qualitatively, our algorithm is competitive with
state-of-the-art adaptive search algorithms

* We run ~ 10X faster in some experiments

—}— Coloring - —}— Coloring

SE ey © % F per
- Random 5 35 Random
£ f— Ours (k=1) S f— Ours (k=1)
F 10° £
5 g %
8 225
3 =

—
& ° 20
O 10-1 8
o £ 15
© 2
()]
- % 10
5 Praea
-2 > 5 **-1‘-"" -
0 N -
100 200 300 400 500 100 200 300 400 500
Number of Nodes Number of Nodes

Implementation and more experimental results: https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs 27



https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs

Problem setup

Identify G* using as few interventions as possible (minimize t)

Markov equivalence class of G*

(D) — ows —

Intervene on v, /

Intervene on v; (can be represented by an essential graph)

Verification: v(G*) = size of minimum vertex cover of covered edges [CSB22]
Search: 0(logn : V(G*)) interventions suffice [CSB22]
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But wait, there’s more!



Other extensions / questions

What if the causal graph is HUGE?
What if we consult domain experts for advice?

What if we intervene >1 vertex per intervention?
* Bounded size interventions

e What if vertices have different interventional costs?
* Additive cost = cost of intervention is cost of all vertices in it

What if we have limited rounds of adaptivity?
At most r rounds, forr<logn

* Can we weaken/remove the causal assumptions?
 What if there are hidden confounders?
 What if we don’t have faithfulness?
* What if we have finite samples? i.e. May incur error in Cl checks
e Beyond hard interventions? Soft/unknown interventions, etc.

Note: Some are in the papers mentioned earlier in this talk; some are solved and under submission. If you are interested, come talk to me to find out more ©
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Backup slides



What if causal graph is HUGE?

H

Local causal discovery:

Only care about a small subgraph of the larger graph

(Informal) Verification: Generalization of “DP on covered edge forest”
(Informal) Search: O(log |H| - v(G*)) interventions suffices

[CS23]
[CS23]



In many problem domains...

Y O

(2) — o —
QQ O
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There are domain experts!

O O
O—=—CY 5 @

Image credit: https://thenounproject.com/icon/doctor-1285618/
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There are domain experts!

O==>—=0C"~ 0 @

Image credit: https://thenounproject.com/icon/look-4968809/



https://thenounproject.com/icon/look-4968809/

There are domain experts!
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But... experts can be wrong

The true causal

graph is '!
- <

Image credit: https://dribbble.com/shots/14489872-Deuvil

ZERO interventions!



https://dribbble.com/shots/14489872-Devil

But... experts can be wrong

The true causal

graph is '!
- <

Downstream tasks with ‘

| > e

ZERO interventions!

Image credit: https://dribbble.com/shots/3759014-Atomic-lllustrations/attachments/3759014-Atomic-lllustrations?mode=media



https://dribbble.com/shots/3759014-Atomic-Illustrations/attachments/3759014-Atomic-Illustrations?mode=media

Searching with imperfect advice




Searching with imperfect advice

The true causal

graph is '!
- o
+ ,,

e

Advice search: 0 (max{l, logp(G*,G)} - v(G*)) interventions [CGB23]




Searching with imperfect advice

The true causal

graph is '!
NS &

Quality of advice G

0<y(G,G)<n
(good) (bad)

Advice search: 0 (max{l, 5@1 - v(G*)) interventions [CGB23]



d-separation

* Consider a path X ~ .- ~ Y in the DAG

o X ~ -

1.

2.

~ Y is blocked by a set Z if either holds:

Along the path, we have
X~wioW—>-~Yor
X~wie-We-+~Yor
X~ e W > e ~ Y,
where W € Z

Along the path, we have collider X ~ -+ > W « ... ~Y,
where W and its descendants are not in Z

e Z could be the empty set
* Wewriteas X Lo Y | Z
* Notion generalizes to sets X and Y



Common causality assumptions

* Markov assumption
XU Y| Z=>X1L,Y|Z

“If d-separated in graph, then conditionally independent in data”

e Faithfulness
XU Y| Z<X 1L, Y| Z

“If conditionally independent in data, then d-separated in graph”



Common causality assumptions

e Faithfulness
XU Y| Z<X U, Y| Z

* No “cancellations” in the distribution
* Toy example (ignoring noise terms):

SEM: X2=aX1
(%) Xo = b X,
cX, +dX; = (ac+ bd) X,

s
I

° ° Consider scenario where red and blue paths “cancel out”
If ac = —bd, then X, = 0 always, and we have X; L, X,
° If faithfulness holds, then the DAG should show X; I X,
But X; and X, not d-separated in this DAG
So, faithfulness violated when ac = —hd



Common causality assumptions

lce-cream
sales

> Shark

attacks



Common causality assumptions

L?:v, )/I Ice—clream A s ~
F A sales
Release the
sharks!!!
Ban ice- =

cream %{ 9

‘%’

sales!!
>

\_ J Shark

attacks

https://thenounproject.com/icon/politician-3189333/
https://thenounproject.com/icon/evil-businessman-with-money-2758402/
https://thenounproject.com/icon/shark-4022671/
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https://thenounproject.com/icon/evil-businessman-with-money-2758402/
https://thenounproject.com/icon/shark-4022671/

Common causality assumptions

e Causal sufficiency
* No unobserved confounders / common cause

————————
-
e N
4 N
Y \
‘ \
eason
\ ’
N\
N //
~

~
———————

lce-cream
sales

When warm weather, more people buy ice-cream, and more people go to beaches



P C a ‘ go r I t h m [Spirtes, Glymour, Scheines, Heckerman 2000]

* A classic constraint-based method for causal graph discovery

* Steps
1. Identify skeleton (See backup slides if time permits)

| |

2. Identify v-structures

| |

3. Orient more edges using the discovered v-structures

[ )

e Fact: If we can always correctly determine conditional
independencies, then PC will output G*

Key takeaway: With enough samples, we can recover essential graph




P C a ‘ gO r I t h m [Spirtes, Glymour, Scheines, Heckerman 2000]

* A classic constraint-based method for causal graph discovery

* Steps

1.

* Fact:

Identify skeleton

 Start with complete undirected graph

* Remove edges X ~ Y when X L Y | Z for conditioning set Z from
D, {x1}, o, {xn} {x1, %5} oo {1, X0}y ooy {X1) o0 X0}

Identify v-structures

* Considerany path X ~Y ~ Z without X ~ 7

e If Y was not used to remove edge X ~ Y in step 1, then it must be the case
that X - Y « Z

Orient more edges using the discovered v-structures
* Apply Meek rules

If we can always correctly determine conditional

independencies, then PC will output G*



Example: PC algorithm

1. Identify skeleton

Xl JJ-XS |X3;X4
X1 L Xe | X,

X, L X, | Xy
Xo L X5 | X3, X,

X3 L Xg | X,

X, U Xc | X, or X, LXc|X,

Xs UL Xo | X5



Example: PC algorithm

2. ldentify v-structures

X1 UL Xs | X3,X,
X L Xe | X,

X, L X, | X,
X, UL X | X3, X,

X3 UL X¢ | X,
Xy UL Xe| Xy or

Xs UL Xo | X5

Xi L Xg | X5

Look at all triplesA ~B ~CandA +~ C
If C & sepset(A,B),thenA - B « C
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2. ldentify v-structures

X UL Xs | X3,X,
X L Xe | X,

X, L X, | X,
X, UL X | X3, X,

X3 UL X¢ | X,
Xy UL Xe| Xy or

Xs UL Xo | X5

Xi L Xg | X5

Look at all triplesA ~B ~CandA +~ C
If C & sepset(A,B),thenA - B « C




Example: PC algorithm

2. ldentify v-structures

X1 L X5 | X3,X,
X1 UL Xg | Xo

X, L X, | X,
X, UL X | X3, X,

X3 UL X¢ | X,
Xy UL Xe| Xy or

Xs UL Xo | X5

Xi L Xg | X5

Look at all triplesA ~B ~CandA +~ C
If C & sepset(A,B),thenA - B « C

Ow®
an ()
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2. ldentify v-structures
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X L Xe | X,

X, L X, | X,
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X3 UL X¢ | X,
Xy UL Xe| Xy or

Xs UL Xo | X5

Xi L Xg | X5

Look at all triplesA ~B ~CandA +~ C
If C & sepset(A,B),thenA - B « C

Ow®
an ()



Example: PC algorithm

2. ldentify v-structures

X1 UL Xs | X3,X,

X1 L Xe | X, Look at all triplesA ~ B ~ Cand A ~ C
If C & sepset(A,B),thenA - B « C

X, L X, | Xq

Xo UL Xs | X3, X, ° °

X3 1L X | X Q

X, L X | X, or X, I Xe|X, °’° °
Xo 1L X | X, °
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2. ldentify v-structures

X1 UL Xs | X3,X,

X1 L Xe | X, Look at all triplesA ~ B ~ Cand A ~ C
If C & sepset(A,B),thenA - B « C

X, L X, | Xy

X, 1L X | Xs, X, ° °

X3 1L X | X Q

X, L Xg | X, or X, 1 Xg|X, °’° °
X 1L Xg | X, °
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Example: PC algorithm

2. ldentify v-structures

X1 UL Xs | X3,X,

X1 L Xe | X, Look at all triplesA ~ B ~ Cand A ~ C
If C & sepset(A,B),thenA - B « C

X, L X, | Xy

Xo UL Xs | X3, X, ° °

X3 1L X | X Q

X, L Xg | X, or X, 1 Xg|X, °’° °
X 1L Xg | X, °



Example: PC algorithm

3. Orient using Meek rules

I N ANE AN
NG N7 S AN




Example: PC algorithm

3. Orient using Meek rules

Lol TN,
NN =12

Meek R3 ‘ ‘




Example: PC algorithm

3. Orient using Meek rules

Lol TN,
NN =12

Meek R3 ‘ ‘




Example: PC algorithm

3. Orient using Meek rules
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Example: PC algorithm

3. Orient using Meek rules

Lol TN

NG N ZE S AN
0'9 (%)

Meek R3 °

Meek R1
Meek R2

Output of PC: Essential graph of G~



