Learning causal DAGs using adaptive interventions

Davin Choo

This talk is based on joint work with
Arnab Bhattacharyya, Themis Gouleakis, Kirankumar Shiragur

Suppose we are given some data and we want to discover causal relationships between them

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

Suppose we are given some data and we want to discover causal relationships between them

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

Genetics	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6
Finance	AAPL	GOOGL	MSFT	AMZN	META	TSLA
\ldots.	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Health care	Diet	Exercise	Weight	Blood pressure	Blood glucose	Cholesterol levels

One possible way: use graphical modelling

	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$	\mathbf{X}_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$X_{1}=f_{1}\left(\epsilon_{1}\right)$
Structural equation model (SEM)
ϵ_{1}
noise

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$X_{1}=f_{1}\left(\epsilon_{1}\right)$
$X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right)$

Structural equation model (SEM)
$\epsilon_{1}, \epsilon_{2}$,
independent noise

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$$
\begin{aligned}
& X_{1}=f_{1}\left(\epsilon_{1}\right) \\
& X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
& X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right)
\end{aligned}
$$

Structural equation model (SEM)
$\epsilon_{1}, \epsilon_{2}, \quad \epsilon_{4}$
independent noise

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$X_{1}=f_{1}\left(\epsilon_{1}\right)$
$X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right)$
$X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right)$
$X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right)$

Structural
equation
model (SEM)

$\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4} \quad$ independent noise

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$X_{1}=f_{1}\left(\epsilon_{1}\right)$
$X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right)$
$X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right)$
Structural equation
$X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right)$
$X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right)$
$X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right)$
$\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}$ independent noise

A directed acyclic graphs (DAG) representation

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample M	0.12	0.95	0.79	0.47	0.05	0.92

$$
\begin{array}{l|l}
X_{1}=f_{1}\left(\epsilon_{1}\right) & \text { Structural } \\
X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right) & \text { equation } \\
X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right) & \text { model (SEM) } \\
X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right) \\
X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right) \\
\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6} \text { independent noise }
\end{array}
$$

Using the Bayesian network, one can decompose the joint distribution as follows:

$$
\operatorname{Pr}\left[X_{1}\right] \cdot \operatorname{Pr}\left[X_{2} \mid X_{1}\right] \cdot \operatorname{Pr}\left[\mathrm{X}_{4} \mid X_{1}\right] \cdot \operatorname{Pr}\left[X_{3} \mid X_{1}, X_{2}, X_{4}\right] \cdot \operatorname{Pr}\left[X_{5} \mid X_{3}, X_{4}\right] \cdot \operatorname{Pr}\left[X_{6} \mid X_{2}\right]
$$

Conditional independence (CI) tests

- A standard way (under some causal assumptions*) to recover graph structure from data is to perform Cl tests
- e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

Conditional independence (CI) tests

- A standard way (under some causal assumptions*) to recover graph structure from data is to perform Cl tests
- e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

Get samples

	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{x}_{\mathbf{5}}$	\mathbf{x}_{6}
Sample 1	0.22	0.04	0.84	0.48	0.98	0.82
Sample 2	0.87	0.17	0.61	0.67	0.67	0.23
Sample 3	0.55	0.54	0.67	0.86	0.93	0.23
\ldots						
Sample \mathbf{M}	0.12	0.95	0.79	0.47	0.05	0.92

Conditional independence (CI) tests

- A standard way (under some causal assumptions*) to recover graph structure from data is to perform Cl tests
- e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

(Recover up to an
equivalence class)
Do Cl tests
- Recover skeleton
- Orient some edges

Conditional independence (CI) tests

- A standard way (under some causal assumptions*) to recover graph structure from data is to perform Cl tests
- e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

What makes them special?

(Recover up to an equivalence class)

Get samples

Unshielded colliders / v-structures

$$
\begin{gathered}
X \not \Perp Y \\
X \not \Perp Z \\
Y \not \Perp Z \\
X \not \Perp Y \mid Z \\
X \Perp Z \mid Y \\
Y \not \Perp Z \mid X
\end{gathered}
$$

$$
\begin{gathered}
X \not \Perp Y \\
X \Perp Z \\
Y \not \Perp Z \\
X \not \Perp Y \mid Z \\
X \not \Perp Z \mid Y \\
Y \not \Perp Z \mid X
\end{gathered}
$$

Toy example

Chance of " A " depends on whether student studied and whether student is smart

Toy example

Lazy \downarrow ل "A"

Lazy students tend to NOT get " A " (because they usually don't study)

Chance of " A " depends on whether student studied and whether student is smart

Toy example

Chance of " A " depends on whether student studied and whether student is smart

Lazy \downarrow ل "A"

Lazy students tend to NOT get " A " (because they usually don't study)

Lazy I "A" | Study

If we knew whether student studied, the laziness of the student is irrelevant to the grade

Toy example

Chance of " A " depends on whether student studied and whether student is smart

Lazy 1/ "A"

Lazy students tend to NOT get " A " (because they usually don't study)

Lazy I "A" | Study

If we knew whether student studied, the laziness of the student is irrelevant to the grade

Lazy ㅛ Smart

Modelling assumption: Smart students are equally likely to be lazy or hard working

Toy example

Chance of " A " depends on whether student studied and whether student is smart

Lazy 1/ "A"

Lazy students tend to NOT get " A " (because they usually don't study)

Lazy II "A" | Study

If we knew whether student studied, the laziness of the student is irrelevant to the grade

Lazy ل Smart

Modelling assumption: Smart students are equally likely to be lazy or hard working

Lazy ㅐ/ Smart | "A"

Roughly speaking, "A" if student smart OR studied. e.g. if NOT smart, then LIKELY to have studied, which implies student was UNLIKELY to be lazy

Two equivalent causal models

- $X_{1}=\epsilon_{1}$
- $X_{2}=a \cdot X_{1}+\epsilon_{2}$
- $\epsilon_{1} \sim N(0,1)$
- $\epsilon_{2} \sim N(0,1)$
- $X_{1}=\frac{a}{a^{2}+1} \cdot X_{2}+\epsilon_{1}$
- $X_{2}=\epsilon_{2}$
- $\epsilon_{1} \sim N\left(0, \frac{1}{a^{2}+1}\right)$
- $\epsilon_{2} \sim N\left(0, a^{2}+1\right)$

Data from both are fully characterized by covariance matrix $\left[\begin{array}{cc}1 & a \\ a & a^{2}+1\end{array}\right]$

Two equivalent causal models

> How to get around nonidentifiability issues from observational data?

- X_{1}
- ϵ_{2} 2. Perform interventions
(more on this later)
- e.g. randomized controlled trials

Markov Equivalence Class (MEC)

- Two DAGs are Markov equivalent if they encode the same Cl relations
- Theorem [Verma, Pearl 1990; Andersson, Madigan, Perlman 1997]

G and G^{\prime} are Markov equivalent if and only if

1) G and G' have the same skeleton
2) G and G' have the same v-structures

- skeleton and v-structures of DAG G^{*} earlier

- For any DAG G^{*}, we use $\left[G^{*}\right]$ to denote its MEC

Essential graphs $\mathcal{E}\left(G^{*}\right)$

- Used to graphically represent a MEC [G* $\left.{ }^{*}\right]$
- DAGs in same MEC have the same essential graph

Essential graphs $\mathcal{E}\left(G^{*}\right)$

- Used to graphically represent a MEC [G* $\left.{ }^{*}\right]$
- DAGs in same MEC have the same essential graph
- Partially oriented DAG
- $X \sim Y$ is oriented as $X \rightarrow Y$ if all DAGs in the MEC agree
- $X \sim Y$ is unoriented arc if there exists disagreement
- $\exists G_{1}, G_{2} \in\left[G^{*}\right]$ in MEC such that $X \rightarrow Y$ in G_{1} and $X \leftarrow Y$ in G_{2}.

Essential graphs $\mathcal{E}\left(G^{*}\right)$

- Used to graphically represent a MEC [G* $]$
- DAGs in same MEC have the same essential graph
- Partially oriented DAG
- $X \sim Y$ is oriented as $X \rightarrow Y$ if all DAGs in the MEC agree
- $X \sim Y$ is unoriented arc if there exists disagreement
- $\exists G_{1}, G_{2} \in\left[G^{*}\right]$ in MEC such that $X \rightarrow Y$ in G_{1} and $X \leftarrow Y$ in G_{2}.
- How to compute essential graph $\mathcal{E}\left(G^{*}\right)$ of G^{*} ?

1. Look at skeleton of G^{*}
2. Orient v-structures in G^{*}
3. Apply Meek rules [Meek 1995]

Meek rules [Meek 1995]

- Sound and complete (with respect to arc orientations with acyclic completion)

We won't miss out on any information

We won't wrongly orient arcs

Meek rules

- Sound and complete (with respect to arc orientations with acyclic completion)

If $b \leftarrow a$, then v-structure

If $b \leftarrow a$, then cycle

If $b \leftarrow a$, then unoriented arcs would have been oriented in the same way in all DAGs within the MEC (via R2)

- Converge in polynomial time [Wienöbst, Bannach, Liśkiewicz 2021]

Essential graph example

- Use CI tests: recover skeleton and v-structures

Essential graph example

- Use CI tests: recover skeleton and v-structures
- Meek R3

Essential graph example

- Use CI tests: recover skeleton and v-structures
- Meek R3
- Meek R1

Essential graph example

- Use Cl tests: recover skeleton and v-structures
- Meek R3
- Meek R1
- Meek R2

Essential graph example

For this talk...

- Some standard causal assumptions
- Causal sufficiency: no unobserved causal variables
- Faithfulness: \Perp in data $\Rightarrow \Perp$ in graph
- Oracle access to conditional independencies
- Simplifying assumptions for this talk
- Hard interventions (see next slide)
- Atomic intervention: One vertex per intervention
- Each vertex has unit cost
- Objective
- Minimize total number of vertices intervened

For this talk...

```
                                    a graph problem with specialized
            causal graph manipulation operations
- Sim
Goal: Fully recover G*
• Each vertex has unit cost
```

- Objective
- Minimize total number of vertices intervened

Hard interventions

$$
\begin{aligned}
& X_{1}=f_{1}\left(\epsilon_{1}\right) \\
& X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right) \\
& X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right) \\
& X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right) \\
& X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right) \\
& \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6} \text { independent noise }
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=f_{1}\left(\epsilon_{1}\right) \\
& X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right) \\
& X_{4}=\text { intervened value } x_{4} \\
& X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right) \\
& X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right) \\
& \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6} \text { independent noise }
\end{aligned}
$$

Hard interventions

$$
\begin{aligned}
& X_{1}=f_{1}\left(\epsilon_{1}\right) \\
& X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right) \\
& X_{4}=f_{4}\left(X_{1}, \epsilon_{4}\right) \\
& X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right) \\
& X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right) \\
& \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6} \text { independent noise }
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=f_{1}\left(\epsilon_{1}\right) \\
& X_{2}=f_{2}\left(X_{1}, \epsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{1}, X_{2}, X_{4}, \epsilon_{3}\right) \\
& X_{4}=\text { Eat Z apples a day } \\
& X_{5}=f_{5}\left(X_{3}, X_{4}, \epsilon_{5}\right) \\
& X_{6}=f_{6}\left(X_{2}, \epsilon_{6}\right) \\
& \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6} \text { independent noise }
\end{aligned}
$$

What can we recover?

(Hidden)

(What we can see)

What can we recover?

(Hidden)

What can we recover?

(Hidden)

(What we can see)

Two classes of interventions

- Non-adaptive
- Given MEC $\left[G^{*}\right]$, decide on a single fixed set of interventions that recovers any possible $G^{*} \in\left[G^{*}\right]$
- Need to intervene on a $\operatorname{skel}\left(\mathcal{E}\left(G^{*}\right)\right)$-separating system [Kocaoglu, Dimakis, Vishwanath 2017]
- Adaptive
- Given MEC [G^{*}],
- Decide on first intervention
- See outcome
- Decide on second intervention
- See outcome
- ...

G-separating system

- Fix an undirected graph $G=(V, E)$
- A subset $\mathcal{J} \subseteq 2^{V}$ is a called a G-separating system if
- For every edge $\{u, v\} \in E, \exists$ intervention $\mathrm{I} \in \mathcal{J}$ such that either $(u \in I \wedge v \notin I)$ or $(u \notin I \wedge v \in I)$
- i.e. "every edge must be cut"
- Atomic interventions \equiv vertex cover of G

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

Suppose we intervene on X_{3}

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

Recover incident edges

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

Meek R1

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

Meek R1

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Power of adaptivity

- Path essential graph
- n possible DAGs (pick a source node and orient away)
- G-separating system needs $\geq\left\lfloor\frac{n}{2}\right\rfloor \in \Omega(n)$ vertices

- Meanwhile, adaptive search can act like binary search!
i.e. only $\mathcal{O}(\log n)$ interventions required

Problem setup

Identify G*

Problem setup

Identify G* using interventions

Problem setup

Identify G* using interventions

Problem setup

Identify G^{*} using as few interventions as possible (minimize t)

Verification: A simpler problem Question:

Verification: A simpler problem Question:

(Note: $v\left(\mathrm{G}^{*}\right)$ is a natural lower bound for adaptive search)

The verification problem

- Given MEC $\left[G^{*}\right]$ and some $G \in\left[G^{*}\right]$, check whether $\mathrm{G}=G^{*}$ using interventions
- Denote the minimum number required by $v(\mathrm{G})$
- $v\left(G^{*}\right)$ is lower bound for searching for G^{*} within $\left[G^{*}\right]$

The verification problem

- Given MEC $\left[G^{*}\right]$ and some $\mathrm{G} \in\left[G^{*}\right]$, check whether $\mathrm{G}=G^{*}$ using interventions
- Denote the minimum number required by $v(\mathrm{G})$
- $v\left(G^{*}\right)$ is lower bound for searching for G^{*} within $\left[G^{*}\right]$
- Trivial solution
- Compute minimum vertex cover on all unoriented arcs of the essential graph $\mathcal{E}(G)=\mathcal{E}\left(G^{*}\right)$
- Check if revealed orientations agree with G
- Worst case: $\Omega(n)$ interventions, e.g. on a line

What was known

\longleftarrow Maximal clique size

1. $\nu(G) \geq\left\lfloor\frac{\omega(G)}{2}\right\rfloor$ [Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]
2. $\left\lceil\frac{n-r}{2}\right\rceil \leq \nu(\mathrm{G}) \leq n-r$
[Porwal, Srivastava, Sinha 2022]

$\mathrm{n}=8, \omega(G)=3, \mathrm{r}=4$
3. $1 \leq v(\mathrm{G})$
4. $2 \leq v(\mathrm{G}) \leq 4$
$\operatorname{MEC}\left[G^{*}\right]$

Characterization via covered edges

Claim: A set $\mathcal{J} \subseteq V$ is a verifying set for DAG $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ if and only if \mathcal{J} is a minimum vertex cover of the covered edges [chickering 1995) of G

- $u \sim v$ is covered edge if they have same parents

Naïve:

Our characterization:

X_{2} is source in G

Characterization via covered edges

Claim: A set $\mathcal{J} \subseteq V$ is a verifying set for DAG $G=(\mathrm{V}, \mathrm{E})$ if and only if \mathcal{J} is a minimum vertex cover of the covered edges [Chickering 1955 of G

- $u \sim v$ is covered edge if they have same parents

Proof sketch:

- (\Rightarrow) Suppose we have a verifying set. Fix any covered edge $u \sim v$ where neither endpoint intervened. Case analysis that all 4 Meek rules will not orient $u \sim v$ will not be oriented.
- (\Leftarrow) Suppose we intervened on some minimum vertex cover of the covered edges. Fix a topological ordering π of vertices. Argue via induction that any edges belonging to the prefix of π is will be oriented.

Comparison

\longleftarrow Maximal clique size

1. $v(\mathrm{G}) \geq\left\lfloor\frac{\omega(G)}{2}\right\rfloor$

Number of maximal cliques
2. $\left\lceil\frac{n-r}{2}\right\rceil \leq \nu(\mathrm{G}) \leq n-r$

$\operatorname{MEC}\left[G^{*}\right]$
$\mathrm{n}=8, \omega(G)=3, \mathrm{r}=4$

1. $1 \leq v(\mathrm{G})$
2. $2 \leq v(\mathrm{G}) \leq 4$

We can compute exact $v(\mathrm{G})$ for any given $\mathrm{G} \in\left[G^{*}\right]$

In fact, $v(G) \in\{3,4\}$ for any $G \in\left[G^{*}\right]$

One possible DAG from [G^{*}]

Efficient computation

- Wait... minimum vertex cover is NP-hard in general!

Efficient computation

- Wait... minimum vertex cover is NP-hard in general!

- Claim: Covered edges induce a forest
- Implication: $v(\mathrm{G})$ can be computed exactly via DP

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

- G is a tree \Rightarrow Prior work: $v(\mathrm{G})=1$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

- G is a tree \Rightarrow Prior work: $v(\mathrm{G})=1$

Through the lens of covered edges

- Covered edges cannot have both endpoints as sink of any maximal clique, so $v(\mathrm{G}) \leq n-r$
- G is a clique \Rightarrow Prior work: $v(\mathrm{G})=\left\lfloor\frac{n}{2}\right\rfloor$

- G is a tree \Rightarrow Prior work: $v(\mathrm{G})=1$

Through the lens of covered edges

- For non-adaptive interventions, we must intervene on a G-separating system

Through the lens of covered edges

- For non-adaptive interventions, we must intervene on a G-separating system
- Two graphs have the same MEC [G^{*}] if and only if there is a sequence of covered edge reversals that transform between them [Chickering 1995]

Through the lens of covered edges

- For non-adaptive interventions, we must intervene on a G-separating system
- Two graphs have the same MEC [G^{*}] if and only if there is a sequence of covered edge reversals that transform between them [Chickering 1995]
- Unoriented in $\mathcal{E}\left(G^{*}\right) \Rightarrow$ Covered edge in some $\mathrm{G} \in\left[G^{*}\right]$

Through the lens of covered edges

- For non-adaptive interventions, we must intervene on a G-separating system
- Two graphs have the same MEC [$\left.G^{*}\right]$ if and only if there is a sequence of covered edge reversals that transform between them [Chickering 1995]
- Unoriented in $\mathcal{E}\left(G^{*}\right) \Rightarrow$ Covered edge in some $\mathrm{G} \in\left[G^{*}\right]$
- So, "non-adaptive must cut all unoriented in $\mathcal{E}\left(G^{*}\right)^{\prime}$, i.e. a G-separating system

The search problem

Identify G* using as few interventions as possible (minimize t)

The search problem

- Given MEC $\left[G^{*}\right]$ and recover G^{*} using interventions
- We know at least $v\left(G^{*}\right)$ is necessary
- Prior works only have guarantees for special classes of graphs: cliques, trees, intersection incomparable, etc.

The search problem

- Given MEC $\left[G^{*}\right]$ and recover G^{*} using interventions
- We know at least $v\left(G^{*}\right)$ is necessary
- Prior works only have guarantees for special classes of graphs: cliques, trees, intersection incomparable, etc.
- Punchline: $\mathcal{O}\left(\log n \cdot v\left(G^{*}\right)\right)$ interventions suffice
- "Search is almost as easy as verification"

The search problem

- Given MEC $\left[G^{*}\right]$ and recover G^{*} using interventions
- We know at least $v\left(G^{*}\right)$ is necessary
- Prior works only have guarantees for special classes of graphs: cliques, trees, intersection incomparable, etc.
- Punchline: $\mathcal{O}\left(\log n \cdot v\left(G^{*}\right)\right)$ interventions suffice
- "Search is almost as easy as verification"
- Algorithm does not even know what $v\left(G^{*}\right)$ is!

The search problem

- Given MEC $\left[G^{*}\right]$ and recover G^{*} using interventions
- We know at least $v\left(G^{*}\right)$ is necessary
- Prior works only have guarantees for special classes of graphs: cliques, trees, intersection incomparable, etc.
- Punchline: $\mathcal{O}\left(\log n \cdot v\left(G^{*}\right)\right)$ interventions suffice
- "Search is almost as easy as verification"
- Algorithm does not even know what $v\left(G^{*}\right)$ is!
- $\Omega(\log n)$ is unavoidable when $\left[G^{*}\right]$ is a path on n nodes
- $v\left(G^{*}\right)=1$
- "Cannot do better than binary search"

The adaptive search algorithm

- Intervene and ignore oriented arcs \Rightarrow Chordal graph. Handle each connected component [Hauser, Bulmann 2012, 2014]

The adaptive search algorithm

- Intervene and ignore oriented arcs \Rightarrow Chordal graph. Handle each connected component [Hauser, Buthman 2012, 2014]
- For any chordal graph G, one can compute in polynomial time a clique separator \mathbf{C} [Gilibert, Rose, Edenbrandt 1984]
- $|A|,|B| \leq \frac{|V(G)|}{2} ;$ C is a clique, i.e. $|C| \leq \omega(G)$

Graph separator theorem for chordal graph

The adaptive search algorithm

- Intervene and ignore oriented arcs \Rightarrow Chordal graph. Handle each connected component [Hauser, Bullmann 2012, 2014]
- For any chordal graph G, one can compute in polynomial time a clique separator \mathbf{C} [Gilbert, Rose, Edenbrandt 1984]
- $|A|,|B| \leq \frac{|V(G)|}{2}$; C is a clique, i.e. $|C| \leq \omega(G)$
- Algorithm: Find clique separator C_{H} in each component H ; Intervene on all nodes in C_{H} 's; Recurse
- Analysis:
- $\mathcal{O}(\log n)$ rounds suffices \leftarrow [Gilbert, Rose, Edenbrandt 1984]
- $\mathcal{O}\left(v\left(G^{*}\right)\right)$ per round \leftarrow We prove new lower bound on $v\left(G^{*}\right)$

lower bound

Intuition [HB12,14]: In any interventional essential graph, interventions across different "connected components" do not help.
Claim: Fix an essential graph and some DAG G in it. Then,

$$
\nu(G) \geq \sum_{\substack{\text { connected components }}}\left\lfloor\frac{\omega(H)}{2}\right\rfloor
$$

G^{*}

Lower bound from claim: $v\left(G^{*}\right) \geq\left\lfloor\frac{3}{2}\right\rfloor=1$
But, from our covered edge characterization, we know that $v\left(G^{*}\right) \approx \frac{n}{2}$

A stronger (but not computable) lower bound

 Intuition [HB12,14]: In any interventional essential graph, interventions across different "connected components" do not help.Claim: Fix an essential graph and some DAG G in it. Then,

A stronger (but not computable) lower bound

 Intuition [HB12,14]: In any interventional essential graph, interventions across different "connected components" do not help.Claim: Fix an essential graph and some DAG G in it. Then,

$$
\nu(G) \geq \sum_{\substack{\text { atomic } \\ \text { interventions } \\ S_{1}, \ldots, S_{t}}}^{\text {max }} \sum_{\substack{\text { connected components }}}\left\lfloor\frac{\omega(H)}{2}\right\rfloor
$$

G^{*}

$$
v\left(G^{*}\right) \geq\left\lfloor\frac{3}{2}\right\rfloor+1+\cdots+1 \in \Omega(n)
$$

The adaptive search algorithm

- Qualitatively, our algorithm is competitive with state-of-the-art adaptive search algorithms
- We run $\sim 10 \times$ faster in some experiments

Problem setup

Identify G* using as few interventions as possible (minimize t)

Verification: $v\left(G^{*}\right)=$ size of minimum vertex cover of covered edges Search: $\mathcal{O}\left(\log n \cdot v\left(G^{*}\right)\right)$ interventions suffice

But wait, there's more!

Other extensions / questions

- What if the causal graph is HUGE?
- What if we consult domain experts for advice?
- What if we intervene >1 vertex per intervention?
- Bounded size interventions
- What if vertices have different interventional costs?
- Additive cost \Rightarrow cost of intervention is cost of all vertices in it
- What if we have limited rounds of adaptivity?
- At most r rounds, for $r<\log n$
- Can we weaken/remove the causal assumptions?
- What if there are hidden confounders?
- What if we don't have faithfulness?
- What if we have finite samples? i.e. May incur error in Cl checks
- Beyond hard interventions? Soft/unknown interventions, etc.

Backup slides

What if causal graph is HUGE?

Local causal discovery:
Only care about a small subgraph of the larger graph (Informal) Verification: Generalization of "DP on covered edge forest"
(Informal) Search: $\mathcal{O}\left(\log |H| \cdot v\left(G^{*}\right)\right)$ interventions suffices

In many problem domains...

There are domain experts!

But... experts can be wrong

But... experts can be wrong

Searching with imperfect advice

Searching with imperfect advice

Searching with imperfect advice

d-separation

- Consider a path $X \sim \cdots \sim Y$ in the DAG
- $X \sim \cdots \sim Y$ is blocked by a set Z if either holds:

1. Along the path, we have

$$
\begin{aligned}
& X \sim \cdots \rightarrow W \rightarrow \cdots \sim Y \text { or } \\
& X \sim \cdots \leftarrow W \leftarrow \cdots \sim Y \text { or } \\
& X \sim \cdots \leftarrow W \rightarrow \cdots \sim Y,
\end{aligned}
$$

$$
\text { where } W \in \boldsymbol{Z}
$$

2. Along the path, we have collider $X \sim \cdots \rightarrow W \leftarrow \cdots \sim Y$, where W and its descendants are not in \boldsymbol{Z}

- Z could be the empty set
- We write as $X \Perp_{G} Y \mid Z$
- Notion generalizes to sets \boldsymbol{X} and \boldsymbol{Y}

Common causality assumptions

- Markov assumption

$$
X \Perp_{\mathrm{G}} Y\left|Z \Rightarrow X \Perp_{\mathrm{p}} Y\right| Z
$$

"If d-separated in graph, then conditionally independent in data"

- Faithfulness

$$
X \Perp_{\mathrm{G}} Y\left|Z \Leftarrow X \Perp_{\mathrm{p}} Y\right| Z
$$

"If conditionally independent in data, then d-separated in graph"

Common causality assumptions

- Faithfulness

$$
X \Perp_{G} Y\left|Z \Leftarrow X \Perp_{\mathrm{p}} Y\right| Z
$$

- No "cancellations" in the distribution
- Toy example (ignoring noise terms):

SEM: $\quad X_{2}=a X_{1}$

$$
X_{3}=b X_{1}
$$

$$
X_{4}=c X_{2}+d X_{3}=(a c+b d) X_{1}
$$

Consider scenario where red and blue paths "cancel out" If $a c=-b d$, then $X_{4}=0$ always, and we have $\mathrm{X}_{1} \Perp_{\mathrm{p}} X_{4}$ If faithfulness holds, then the DAG should show $\mathrm{X}_{1} \Perp_{\mathrm{G}} X_{4}$ But X_{1} and X_{4} not d-separated in this DAG So, faithfulness violated when $a c=-b d$

Common causality assumptions

Common causality assumptions

Common causality assumptions

- Causal sufficiency
- No unobserved confounders / common cause

PC algorithm

[Spirtes, Glymour, Scheines, Heckerman 2000]

- A classic constraint-based method for causal graph discovery
- Steps

1. Identify skeleton
(See backup slides if time permits)
2. Identify v-structures
3. Orient more edges using the discovered v-structures

- Fact: If we can always correctly determine conditional independencies, then PC will output G^{*}
Key takeaway: With enough samples, we can recover essential graph

PC algorithm

[Spirtes, Glymour, Scheines, Heckerman 2000]

- A classic constraint-based method for causal graph discovery
- Steps

1. Identify skeleton

- Start with complete undirected graph
- Remove edges $X \sim Y$ when $X \Perp Y \mid Z$ for conditioning set Z from $\emptyset,\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}, \ldots,\left\{x_{1}, \ldots, x_{n}\right\}$

2. Identify v-structures

- Consider any path $X \sim Y \sim Z$ without $X \sim Z$
- If Y was not used to remove edge $X \sim Y$ in step 1, then it must be the case that $X \rightarrow Y \leftarrow Z$

3. Orient more edges using the discovered v-structures

- Apply Meek rules
- Fact: If we can always correctly determine conditional independencies, then PC will output G^{*}

Example: PC algorithm

1. Identify skeleton

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

2. Identify v -structures

$X_{1} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{1} \Perp X_{6} \mid X_{2}$
$X_{2} \Perp X_{4} \mid X_{1}$
$X_{2} \Perp X_{5} \mid X_{3}, X_{4}$
$X_{3} \Perp X_{6} \mid X_{2}$
$X_{4} \Perp X_{6} \mid X_{1} \quad$ or $\quad X_{4} \Perp X_{6} \mid X_{2}$
$X_{5} \Perp X_{6} \mid X_{2}$

Look at all triples $A \sim B \sim C$ and $A \times C$
If $C \notin \operatorname{sepset}(A, B)$, then $A \rightarrow B \leftarrow C$

Example: PC algorithm

3. Orient using Meek rules

Example: PC algorithm

3. Orient using Meek rules

Meek R3

Example: PC algorithm

3. Orient using Meek rules

Meek R3

Example: PC algorithm

3. Orient using Meek rules

Meek R3
Meek R1

Example: PC algorithm

3. Orient using Meek rules

Meek R3
Meek R1

Example: PC algorithm

3. Orient using Meek rules

Meek R3
Meek R1

Meek R2

Example: PC algorithm

3. Orient using Meek rules

Meek R3
Meek R1

Meek R2

Example: PC algorithm

3. Orient using Meek rules

Meek R3
Meek R1

Meek R2
Output of PC: Essential graph of G^{*}

