
Learning causal DAGs using
adaptive interventions

This talk is based on joint work with
Arnab Bhattacharyya, Themis Gouleakis, Kirankumar Shiragur

Davin Choo

X1 X2 X3 X4 X5 X6

Sample 1 0.22 0.04 0.84 0.48 0.98 0.82

Sample 2 0.87 0.17 0.61 0.67 0.67 0.23

Sample 3 0.55 0.54 0.67 0.86 0.93 0.23

… … … … … … …

Sample M 0.12 0.95 0.79 0.47 0.05 0.92

Suppose we are given some data and we want
to discover causal relationships between them

1

Suppose we are given some data and we want
to discover causal relationships between them

X1 X2 X3 X4 X5 X6

Sample 1 0.22 0.04 0.84 0.48 0.98 0.82

Sample 2 0.87 0.17 0.61 0.67 0.67 0.23

Sample 3 0.55 0.54 0.67 0.86 0.93 0.23

… … … … … … …

Sample M 0.12 0.95 0.79 0.47 0.05 0.92

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6Genetics

AAPL GOOGL MSFT AMZN META TSLAFinance

Diet Exercise Weight Blood
pressure

Blood
glucose

Cholesterol
levels

Health
care

… … … … … ……

1

One possible way: use graphical modelling

X1 X2

X5

X3X4 X6

𝐺∗

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

2

A directed acyclic graphs (DAG) representation

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise𝐺∗

Structural
equation
model (SEM)

Using	the	Bayesian	network,	one	can	decompose	the	joint	distribution	as	follows:
Pr 𝑋" ⋅ Pr 𝑋# 𝑋"] ⋅ Pr[X% X" ⋅ Pr[𝑋$| 𝑋", 𝑋#, 𝑋%] ⋅ Pr[𝑋& 𝑋$, 𝑋% ⋅ Pr 𝑋' 𝑋#]

2

Conditional independence (CI) tests

• A standard way (under some causal assumptions*) to recover graph
structure from data is to perform CI tests
• e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

*See backup slides if time permits 3

Conditional independence (CI) tests

Get samples

• A standard way (under some causal assumptions*) to recover graph
structure from data is to perform CI tests
• e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

*See backup slides if time permits 3

Conditional independence (CI) tests

Get samples Do CI tests
• Recover skeleton
• Orient some edges

(Recover up to an
equivalence class)

Essential graph ℰ(𝐺∗)
Partially oriented 𝐺∗
that represents the

equivalence class [𝐺∗]

• A standard way (under some causal assumptions*) to recover graph
structure from data is to perform CI tests
• e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

*See backup slides if time permits 3

Conditional independence (CI) tests

• A standard way (under some causal assumptions*) to recover graph
structure from data is to perform CI tests
• e.g. PC (Peter-Clark) algorithm* [Spirtes, Glymour, Scheines, Heckerman 2000]

Get samples Do CI tests
• Recover skeleton
• Orient some edges

(Recover up to an
equivalence class)

Essential graph ℰ(𝐺∗)
Partially oriented 𝐺∗
that represents the

equivalence class [𝐺∗]

What are these kinds of edges?
What makes them special?

*See backup slides if time permits 3

Unshielded colliders / v-structures

X Y Z

X Y Z

X Y Z

X

Y

Z

4

Toy example

Smart? Study?

“A” for
class?

Lazy?“Yes” / “No”
binary variables

Laziness affects
whether student

studied or not

Chance of “A” depends on whether student
studied and whether student is smart

5

Toy example

Smart? Study?

“A” for
class?

Lazy?

Lazy ⫫ “A”
“Yes” / “No”

binary variables

Laziness affects
whether student

studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Lazy students tend to NOT get “A”
(because they usually don’t study)

5

Toy example

Smart? Study?

“A” for
class?

Lazy?

Lazy ⫫ “A”

Lazy ⫫ “A” | Study

“Yes” / “No”
binary variables

Lazy students tend to NOT get “A”
(because they usually don’t study)

If we knew whether student studied, the
laziness of the student is irrelevant to the grade

Laziness affects
whether student

studied or not

Chance of “A” depends on whether student
studied and whether student is smart

5

Toy example

Smart? Study?

“A” for
class?

Lazy?

Lazy ⫫ “A”

Lazy ⫫ “A” | Study

Lazy ⫫ Smart

“Yes” / “No”
binary variables

If we knew whether student studied, the
laziness of the student is irrelevant to the grade

Laziness affects
whether student

studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Modelling assumption: Smart students are
equally likely to be lazy or hard working

Lazy students tend to NOT get “A”
(because they usually don’t study)

5

Toy example

Smart? Study?

“A” for
class?

Lazy?

Lazy ⫫ “A”

Lazy ⫫ “A” | Study

Lazy ⫫ Smart

Lazy ⫫ Smart | “A”

“Yes” / “No”
binary variables

If we knew whether student studied, the
laziness of the student is irrelevant to the grade

Laziness affects
whether student

studied or not

Chance of “A” depends on whether student
studied and whether student is smart

Modelling assumption: Smart students are
equally likely to be lazy or hard working

Roughly speaking, “A” if student smart OR studied.
e.g. if NOT smart, then LIKELY to have studied,
which implies student was UNLIKELY to be lazy

Lazy students tend to NOT get “A”
(because they usually don’t study)

5

Two equivalent causal models

• 𝑋! = 𝜖!
• 𝑋" = 𝑎 ⋅ 𝑋! + 𝜖"
• 𝜖! ∼ 𝑁(0, 1)
• 𝜖" ∼ 𝑁(0, 1)

Example from: https://youtu.be/rE6IMfSkOU0?t=849. See https://github.com/csquires/6.S091-causality for full course

X1 X2 X1 X2

• 𝑋! =
#

#!$!
⋅ 𝑋" + 𝜖!

• 𝑋" = 𝜖"
• 𝜖! ∼ 𝑁 0, !

#!$!
• 𝜖" ∼ 𝑁(0, 𝑎" + 1)

Data from both are fully characterized by covariance matrix 1 𝑎
𝑎 𝑎! + 1

6

https://youtu.be/rE6IMfSkOU0?t=849
https://github.com/csquires/6.S091-causality

Two equivalent causal models

• 𝑋! = 𝜖!
• 𝑋" = 𝑎 ⋅ 𝑋! + 𝜖"
• 𝜖! ∼ 𝑁(0, 1)
• 𝜖" ∼ 𝑁(0, 1)

Example from: https://youtu.be/rE6IMfSkOU0?t=849. See https://github.com/csquires/6.S091-causality for full course

X1 X2 X1 X2

• 𝑋! =
#

#!$!
⋅ 𝑋" + 𝜖!

• 𝑋" = 𝜖"
• 𝜖! ∼ 𝑁 0, !

#!$!
• 𝜖" ∼ 𝑁(0, 𝑎" + 1)

Data from both are fully characterized by covariance matrix 1 𝑎
𝑎 𝑎! + 1

How to get around non-
identifiability issues from

observational data?

1. Make assumptions about
functional form of SEM
• e.g. Non-Gaussian noise

2. Perform interventions
(more on this later)
• e.g. randomized controlled trials

6

https://youtu.be/rE6IMfSkOU0?t=849
https://github.com/csquires/6.S091-causality

Markov Equivalence Class (MEC)

• Two DAGs are Markov equivalent if they encode the same CI relations
• Theorem [Verma, Pearl 1990; Andersson, Madigan, Perlman 1997]

G and G’ are Markov equivalent if and only if
1) G and G’ have the same skeleton
2) G and G’ have the same v-structures

• skeleton and v-structures of DAG 𝐺∗ earlier

• For any DAG 𝐺∗, we use [𝐺∗] to denote its MEC

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

7

Essential graphs ℰ(𝐺∗)

• Used to graphically represent a MEC [G∗]
• DAGs in same MEC have the same essential graph

8

Essential graphs ℰ(𝐺∗)

• Used to graphically represent a MEC [G∗]
• DAGs in same MEC have the same essential graph
• Partially oriented DAG
• 𝑋 ∼ 𝑌 is oriented as 𝑋 → 𝑌 if all DAGs in the MEC agree
• 𝑋 ∼ 𝑌 is unoriented arc if there exists disagreement

• ∃𝐺#, 𝐺! ∈ 𝐺∗ in MEC such that 𝑋 → 𝑌 in 𝐺# and 𝑋 ← 𝑌 in 𝐺!.

8

Essential graphs ℰ(𝐺∗)

• Used to graphically represent a MEC [G∗]
• DAGs in same MEC have the same essential graph
• Partially oriented DAG
• 𝑋 ∼ 𝑌 is oriented as 𝑋 → 𝑌 if all DAGs in the MEC agree
• 𝑋 ∼ 𝑌 is unoriented arc if there exists disagreement

• ∃𝐺#, 𝐺! ∈ 𝐺∗ in MEC such that 𝑋 → 𝑌 in 𝐺# and 𝑋 ← 𝑌 in 𝐺!.

• How to compute essential graph ℰ(𝐺∗) of 𝐺∗?
1. Look at skeleton of 𝐺∗
2. Orient v-structures in 𝐺∗
3. Apply Meek rules [Meek 1995]

8

Meek rules [Meek 1995]

• Sound and complete
(with respect to arc orientations with acyclic completion)

• Converge in polynomial time [Wienöbst, Bannach, Liśkiewicz 2021]

We won’t miss out on
any information

We won’t wrongly
orient arcs

9

Meek rules [Meek 1995]

• Sound and complete
(with respect to arc orientations with acyclic completion)

• Converge in polynomial time [Wienöbst, Bannach, Liśkiewicz 2021]

If 𝑏 ← 𝑎,
then v-structure

If 𝑏 ← 𝑎,
then cycle

If 𝑏 ← 𝑎, then unoriented arcs would
have been oriented in the same way in
all DAGs within the MEC (via R2)

9

Essential graph example

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

• Use CI tests: recover skeleton and v-structures

10

Essential graph example

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

• Use CI tests: recover skeleton and v-structures
• Meek R3

10

Essential graph example

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

• Use CI tests: recover skeleton and v-structures
• Meek R3
• Meek R1

10

Essential graph example

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

ℰ(𝐺∗)

• Use CI tests: recover skeleton and v-structures
• Meek R3
• Meek R1
• Meek R2

10

Essential graph example

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

ℰ(𝐺∗)

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

[𝐺∗]𝐺∗

10

For this talk…

• Some standard causal assumptions
• Causal sufficiency: no unobserved causal variables
• Faithfulness: ⫫ in data ⇒⫫ in graph
• Oracle access to conditional independencies

• Simplifying assumptions for this talk
• Hard interventions (see next slide)
• Atomic intervention: One vertex per intervention
• Each vertex has unit cost

• Objective
• Minimize total number of vertices intervened

11

For this talk…

• Some standard causal assumptions
• Causal sufficiency: no unobserved causal variables
• Faithfulness: ⫫ in data ⇒⫫ in graph
• Oracle access to conditional independencies

• Simplifying assumptions for this talk
• Hard interventions (see next slide)
• Atomic intervention: One vertex per intervention
• Each vertex has unit cost

• Objective
• Minimize total number of vertices intervened

We can abstract structure learning as
a graph problem with specialized

causal graph manipulation operations

Goal: Fully recover 𝐺∗

11

Hard interventions

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise

X1 X2

X5

X3X4 X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = intervened value 𝑥%
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise

𝐺∗

𝑑𝑜 𝑋% = 𝑥%

12

Hard interventions

X1 X2

X5

X3Diet X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = 𝑓%(𝑋", 𝜖%)
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise

X1 X2

X5

X3Diet X6

𝑋" = 𝑓" 𝜖"
𝑋# = 𝑓#(𝑋", 𝜖#)
𝑋$ = 𝑓$(𝑋", 𝑋#, 𝑋%, 𝜖$)
𝑋% = Eat Z apples a day
𝑋& = 𝑓&(𝑋$, 𝑋%, 𝜖&)
𝑋' = 𝑓' 𝑋#, 𝜖'
𝜖", 𝜖#, 𝜖$, 𝜖%, 𝜖&, 𝜖' independent noise

𝐺∗

𝑑𝑜 𝑋% = 𝑥%

12

What can we recover?

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

ℰ(𝐺∗)

(Hidden) (What we can see)

13

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

ℰ(𝐺∗)

X1 X2

X5

X3X4 X6

Intervene on 𝑋%

X1 X2

X5

X3X4 X6

ℰ(!(𝐺
∗)

What can we recover?
(Hidden) (What we can see)

13

X1 X2

X5

X3X4 X6

𝐺∗

X1 X2

X5

X3X4 X6

ℰ(𝐺∗)

X1 X2

X5

X3X4 X6

Intervene on 𝑋%

X1 X2

X5

X3X4 X6

ℰ(!(𝐺
∗)

Intervening on 𝑋% lets
us recover arc directions

incident to 𝑋%

What can we recover?
(Hidden) (What we can see)

13

Two classes of interventions

• Non-adaptive
• Given MEC [𝐺∗], decide on a single fixed set of

interventions that recovers any possible 𝐺∗ ∈ 𝐺∗
• Need to intervene on a 𝑠𝑘𝑒𝑙 ℰ 𝐺∗ -separating system

[Kocaoglu, Dimakis, Vishwanath 2017]

• Adaptive
• Given MEC [𝐺∗],

• Decide on first intervention
• See outcome
• Decide on second intervention
• See outcome
• …

14

G-separating system [Kocaoglu, Dimakis, Vishwanath 2017]

• Fix an undirected graph 𝐺 = 𝑉, 𝐸
• A subset ℐ ⊆ 21 is a called a G-separating system if
• For every edge 𝑢, 𝑣 ∈ 𝐸, ∃ intervention I ∈ ℐ such that

either (𝑢 ∈ 𝐼 ∧ 𝑣 ∉ 𝐼) or (𝑢 ∉ 𝐼 ∧ 𝑣 ∈ 𝐼)
• i.e. “every edge must be cut”

• Atomic interventions ≡ vertex cover of 𝐺

15

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

X1 X2 X4X3 … Xn

16

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

X2 is hidden
source

16

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

16

Suppose we intervene on 𝑋$

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

Recover incident edges

16

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

Meek R1

16

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

Meek R1

16

Power of adaptivity

• Path essential graph
• n possible DAGs (pick a source node and orient away)
• G-separating system needs ≥ Q

R
∈ Ω(𝑛) vertices

• Meanwhile, adaptive search can act like binary search!
i.e. only 𝒪 log 𝑛 interventions required

X1 X2 X4X3 … Xn

Progress after intervening on X3
Conclusion: The hidden source must be “on the left side” of X3

16

Problem setup

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G*

17

Problem setup

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G* using interventions

Intervene on v1

17

Problem setup

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G* using interventions

Intervene on v1

Intervene on vt

⋮

17

Problem setup

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G* using as few interventions as possible (minimize t)

Intervene on v1

Intervene on vt

⋮

17

G* Data

Question:

Is = ?G*

(can be represented by an essential graph)

Verification: A simpler problem

18

G*

G
Data

Let 𝝂 𝐆 be the
minimum number of

interventions needed to
answer this question

(Note: 𝜈 G∗ is a natural lower
bound for adaptive search)

Question:

Is = ?G* G

(can be represented by an essential graph)

Verification: A simpler problem

18

The verification problem

• Given MEC [𝐺∗] and some G ∈ [𝐺∗] ,
check whether G = 𝐺∗ using interventions
• Denote the minimum number required by 𝜈(G)
• 𝜈(𝐺∗) is lower bound for searching for 𝐺∗ within [𝐺∗]

19

The verification problem

• Given MEC [𝐺∗] and some G ∈ [𝐺∗] ,
check whether G = 𝐺∗ using interventions
• Denote the minimum number required by 𝜈(G)
• 𝜈(𝐺∗) is lower bound for searching for 𝐺∗ within [𝐺∗]

• Trivial solution
• Compute minimum vertex cover on all unoriented arcs

of the essential graph ℰ 𝐺 = ℰ(𝐺∗)
• Check if revealed orientations agree with G
• Worst case: Ω(𝑛) interventions, e.g. on a line

X1 X2 X4X3 … Xn

19

What was known

1. 𝜈 G ≥ 4 5
"

[Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]

2. 678
"

≤ 𝜈 G ≤ 𝑛 − 𝑟 [Porwal, Srivastava, Sinha 2022]

Maximal clique size

Number of maximal cliques

A

B

C

D E

F

G

H

MEC [𝐺∗]

n = 8, 𝜔 𝐺 = 3, r = 4

1. 1 ≤ 𝜈 G
2. 2 ≤ 𝜈 G ≤ 4

20

Characterization via covered edges

Claim: A set ℐ ⊆ 𝑉 is a verifying set for DAG G = V, E if
and only if ℐ is a minimum vertex cover of the covered
edges [Chickering 1995] of G

• 𝑢 ∼ 𝑣 is covered edge if they have same parents

Proof sketch:
• (⇒) Suppose we have a verifying set. Fix any covered edge
𝑢 ∼ 𝑣 where neither endpoint intervened. Case analysis that
all 4 Meek rules will not orient 𝑢 ∼ 𝑣 will not be oriented.

• (⇐) Suppose we intervened on some minimum vertex cover
of the covered edges. Fix a topological ordering 𝜋 of vertices.
Argue via induction that any edges belonging to the prefix of
𝜋 is will be oriented.

X1 X2 X4X3 … Xn

X2 is source in G

X1 X2 X4X3 … Xn

Our characterization:

Naïve:

21

Characterization via covered edges

Claim: A set ℐ ⊆ 𝑉 is a verifying set for DAG G = V, E if
and only if ℐ is a minimum vertex cover of the covered
edges [Chickering 1995] of G

• 𝑢 ∼ 𝑣 is covered edge if they have same parents

Proof sketch:
• (⇒) Suppose we have a verifying set. Fix any covered edge
𝑢 ∼ 𝑣 where neither endpoint intervened. Case analysis that
all 4 Meek rules will not orient 𝑢 ∼ 𝑣 will not be oriented.

• (⇐) Suppose we intervened on some minimum vertex cover
of the covered edges. Fix a topological ordering 𝜋 of vertices.
Argue via induction that any edges belonging to the prefix of
𝜋 is will be oriented.

The overall proof is short (≤ 1 page in total) and quite subtle. 21

Comparison

1. 𝜈 G ≥ 4 5
"

[SMG+20]

2. 678
"

≤ 𝜈 G ≤ 𝑛 − 𝑟 [PSS22]

Maximal clique size

Number of maximal cliques

A

B

C

D E

F

G

H

A

B

C

D E

F

G

H

n = 8, 𝜔 𝐺 = 3, r = 4

1. 1 ≤ 𝜈 G
2. 2 ≤ 𝜈 G ≤ 4

We can compute
exact 𝜈 G for any
given G ∈ 𝐺∗

In fact, 𝜈 G ∈ {3,4}
for any G ∈ 𝐺∗ One possible DAG from [𝐺∗]MEC [𝐺∗]

22

Efficient computation

• Wait… minimum vertex cover is NP-hard in general!

• Claim: Covered edges induce a forest
• Implication: 𝜈 G can be computed exactly via DP

Image credit: https://wronghands1.com/2018/01/12/parts-of-the-elephant-in-the-room/ 23

https://wronghands1.com/2018/01/12/parts-of-the-elephant-in-the-room/

Efficient computation

• Wait… minimum vertex cover is NP-hard in general!

• Claim: Covered edges induce a forest
• Implication: 𝜈 G can be computed exactly via DP

Image credit: https://wronghands1.com/2018/01/12/parts-of-the-elephant-in-the-room/ 23

https://wronghands1.com/2018/01/12/parts-of-the-elephant-in-the-room/

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

⋮
⋮

root
24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

⋮
⋮

root
24

• Covered edges cannot have both endpoints as sink
of any maximal clique, so 𝜈 G ≤ 𝑛 − 𝑟

• G is a clique ⇒ Prior work: 𝜈 G = 6
"

• G is a tree ⇒
Prior work: 𝜈 G = 1

Through the lens of covered edges

X1 X2 X4X3 … Xn

⋮
⋮

root
24

Through the lens of covered edges

• For non-adaptive interventions, we must intervene
on a G-separating system
• Two graphs have the same MEC 𝐺∗ if and only if there

is a sequence of covered edge reversals that transform
between them [Chi95]

• Unoriented in 𝐺∗ ⇒ Covered edge in some G ∈ 𝐺∗
• So, “non-adaptive must cut all unoriented in ℰ(𝐺∗)”,

i.e. a G-separating system

24

Through the lens of covered edges

• For non-adaptive interventions, we must intervene
on a G-separating system
• Two graphs have the same MEC 𝐺∗ if and only if there

is a sequence of covered edge reversals that transform
between them [Chickering 1995]

• Unoriented in 𝐺∗ ⇒ Covered edge in some G ∈ 𝐺∗
• So, “non-adaptive must cut all unoriented in ℰ(𝐺∗)”,

i.e. a G-separating system

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Flip 𝑋" ∼ 𝑋% Flip 𝑋" ∼ 𝑋# Flip 𝑋# ∼ 𝑋'

24

Through the lens of covered edges

• For non-adaptive interventions, we must intervene
on a G-separating system
• Two graphs have the same MEC 𝐺∗ if and only if there

is a sequence of covered edge reversals that transform
between them [Chickering 1995]

• Unoriented in ℰ 𝐺∗ ⇒ Covered edge in some G ∈ 𝐺∗

24

Through the lens of covered edges

• For non-adaptive interventions, we must intervene
on a G-separating system
• Two graphs have the same MEC 𝐺∗ if and only if there

is a sequence of covered edge reversals that transform
between them [Chickering 1995]

• Unoriented in ℰ 𝐺∗ ⇒ Covered edge in some G ∈ 𝐺∗
• So, “non-adaptive must cut all unoriented in ℰ(𝐺∗)”,

i.e. a G-separating system

24

The search problem

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G* using as few interventions as possible (minimize t)

Intervene on v1

Intervene on vt

⋮

25

The search problem

• Given MEC [𝐺∗] and recover G∗ using interventions
• We know at least 𝜈(𝐺∗) is necessary
• Prior works only have guarantees for special classes of

graphs: cliques, trees, intersection incomparable, etc.

25

The search problem

• Given MEC [𝐺∗] and recover G∗ using interventions
• We know at least 𝜈(𝐺∗) is necessary
• Prior works only have guarantees for special classes of

graphs: cliques, trees, intersection incomparable, etc.

• Punchline: 𝒪 log 𝑛 ⋅ 𝜈 𝐺∗ interventions suffice
• “Search is almost as easy as verification”

25

The search problem

• Given MEC [𝐺∗] and recover G∗ using interventions
• We know at least 𝜈(𝐺∗) is necessary
• Prior works only have guarantees for special classes of

graphs: cliques, trees, intersection incomparable, etc.

• Punchline: 𝒪 log 𝑛 ⋅ 𝜈 𝐺∗ interventions suffice
• “Search is almost as easy as verification”
• Algorithm does not even know what 𝜈 𝐺∗ is!

25

The search problem

• Given MEC [𝐺∗] and recover G∗ using interventions
• We know at least 𝜈(𝐺∗) is necessary
• Prior works only have guarantees for special classes of

graphs: cliques, trees, intersection incomparable, etc.

• Punchline: 𝒪 log 𝑛 ⋅ 𝜈 𝐺∗ interventions suffice
• “Search is almost as easy as verification”
• Algorithm does not even know what 𝜈 𝐺∗ is!
• Ω(log 𝑛) is unavoidable when [𝐺∗] is a path on n nodes

• 𝜈 𝐺∗ = 1
• “Cannot do better than binary search”

25

The adaptive search algorithm

• Intervene and ignore oriented arcs ⇒ Chordal graph.
Handle each connected component [Hauser, Bühlmann 2012, 2014]

• For any chordal graph G, one can compute in
polynomial time a clique separator C [Gilbert, Rose, Edenbrandt 1984]

• 𝐴 , 𝐵 ≤ ' (
)

; C is a clique, i.e. 𝐶 ≤ 𝜔(𝐺)

• Algorithm: Find clique separator CH in each component
H; Intervene on all nodes in CH’s; Recurse
• Analysis:

• 𝒪 log 𝑛 rounds suffices ← [GRE84]
• 𝒪 𝜈 𝐺∗ per round ← Our new lower bound on 𝜈 𝐺∗

26

The adaptive search algorithm

• Intervene and ignore oriented arcs ⇒ Chordal graph.
Handle each connected component [Hauser, Bühlmann 2012, 2014]

• For any chordal graph G, one can compute in
polynomial time a clique separator C [Gilbert, Rose, Edenbrandt 1984]

• 𝐴 , 𝐵 ≤ ' (
)

; C is a clique, i.e. 𝐶 ≤ 𝜔(𝐺)

• Algorithm: Find clique separator CH in each component
H; Intervene on all nodes in CH’s; Recurse
• Analysis:

• 𝒪 log 𝑛 rounds suffices ← [GRE84]
• 𝒪 𝜈 𝐺∗ per round ← Our new lower bound on 𝜈 𝐺∗

26

BA C

Graph separator
theorem for

chordal graph

The adaptive search algorithm

• Intervene and ignore oriented arcs ⇒ Chordal graph.
Handle each connected component [Hauser, Bühlmann 2012, 2014]

• For any chordal graph G, one can compute in
polynomial time a clique separator C [Gilbert, Rose, Edenbrandt 1984]

• 𝐴 , 𝐵 ≤ ' (
)

; C is a clique, i.e. 𝐶 ≤ 𝜔(𝐺)

• Algorithm: Find clique separator CH in each component
H; Intervene on all nodes in CH’s; Recurse
• Analysis:

• 𝒪 log 𝑛 rounds suffices ← [Gilbert, Rose, Edenbrandt 1984]

• 𝒪 𝜈 𝐺∗ per round ← We prove new lower bound on 𝜈 𝐺∗

26

A stronger (but not computable) lower bound
Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

[SMG+20]

Lower bound from claim: 𝜈 𝐺∗ ≥ $
#
= 1

But, from our covered edge characterization, we know that 𝜈 𝐺∗ ≈)
#

27

A stronger (but not computable) lower bound
Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

[CSB22]

27

A stronger (but not computable) lower bound
Intuition [HB12,14]: In any interventional essential graph, interventions
across different “connected components” do not help.

[CSB22]

𝜈 𝐺∗ ≥
3
2 + 1 +⋯+ 1 ∈ Ω(𝑛)

27

The adaptive search algorithm

• Qualitatively, our algorithm is competitive with
state-of-the-art adaptive search algorithms
• We run ∼ 10× faster in some experiments

Implementation and more experimental results: https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs 27

https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs

Problem setup

G*

G*
Data

(can be represented by an essential graph)

Markov equivalence class of G*

Identify G* using as few interventions as possible (minimize t)

Intervene on v1

Intervene on vt

⋮

Verification: 𝜈 𝐺∗ = size of minimum vertex cover of covered edges [CSB22]
Search: 𝒪 log 𝑛 ⋅ 𝜈 𝐺∗ interventions suffice [CSB22]

28

But wait, there’s more!

Other extensions / questions

• What if the causal graph is HUGE?
• What if we consult domain experts for advice?
• What if we intervene >1 vertex per intervention?

• Bounded size interventions
• What if vertices have different interventional costs?

• Additive cost ⇒ cost of intervention is cost of all vertices in it
• What if we have limited rounds of adaptivity?

• At most r rounds, for r < log n
• Can we weaken/remove the causal assumptions?

• What if there are hidden confounders?
• What if we don’t have faithfulness?
• What if we have finite samples? i.e. May incur error in CI checks
• Beyond hard interventions? Soft/unknown interventions, etc.

Note: Some are in the papers mentioned earlier in this talk; some are solved and under submission. If you are interested, come talk to me to find out more J 29

Backup slides

What if causal graph is HUGE?

…

…

…

…

…

…

…
…

Local causal discovery:
Only care about a small subgraph of the larger graph
(Informal) Verification: Generalization of “DP on covered edge forest” [CS23]
(Informal) Search: 𝒪 log |𝐻| ⋅ 𝜈 𝐺∗ interventions suffices [CS23]

H

In many problem domains…

G*

G*
Data

There are domain experts!

G*

G*
Data

Image credit: https://thenounproject.com/icon/doctor-1285618/

https://thenounproject.com/icon/doctor-1285618/

There are domain experts!

G*

G*
Data

Image credit: https://thenounproject.com/icon/look-4968809/

https://thenounproject.com/icon/look-4968809/

There are domain experts!

G*

G*
Data

There are domain experts!

G*

G*
Data

The true causal

graph is ! G*

There are domain experts!

G*

G*
Data

The true causal

graph is ! G*

ZERO interventions!

There are domain experts!

G*

G*
Data

The true causal

graph is ! G*

ZERO interventions!

Downstream tasks with G*

But… experts can be wrong

G*

G*"𝐺
Data

Image credit: https://dribbble.com/shots/14489872-Devil

The true causal

graph is ! "𝐺

ZERO interventions!

https://dribbble.com/shots/14489872-Devil

But… experts can be wrong

G*

G*"𝐺
Data

Image credit: https://dribbble.com/shots/3759014-Atomic-Illustrations/attachments/3759014-Atomic-Illustrations?mode=media

The true causal

graph is ! "𝐺

ZERO interventions!

Downstream tasks with "𝐺

https://dribbble.com/shots/3759014-Atomic-Illustrations/attachments/3759014-Atomic-Illustrations?mode=media

Searching with imperfect advice

G*

G*"𝐺
Data

The true causal

graph is ! "𝐺

Downstream tasks with

“some” interventions

G*

G*

G*"𝐺
Data

The true causal

graph is ! "𝐺

Downstream tasks with

“some” interventions

G*

Advice search: 𝒪 max{1, log𝜓(𝐺∗, l𝐺)} ⋅ 𝜈 𝐺∗ interventions [CGB23]

Searching with imperfect advice

G*

G*"𝐺
Data

The true causal

graph is ! "𝐺

Downstream tasks with

“some” interventions

G*

Advice search: 𝒪 max{1, log𝜓(𝐺∗, l𝐺)} ⋅ 𝜈 𝐺∗ interventions [CGB23]

Quality of advice l𝐺
0 ≤ 𝜓 𝐺∗, l𝐺 ≤ 𝑛

(good) (bad)

Searching with imperfect advice

d-separation

• Consider a path 𝑋 ∼ ⋯ ∼ 𝑌 in the DAG
• 𝑋 ∼ ⋯ ∼ 𝑌 is blocked by a set 𝒁 if either holds:

1. Along the path, we have
𝑋 ∼ ⋯ → 𝑊 → ⋯ ∼ 𝑌 or
𝑋 ∼ ⋯ ← 𝑊 ← ⋯ ∼ 𝑌 or
𝑋 ∼ ⋯ ← 𝑊 → ⋯ ∼ 𝑌,
where 𝑊 ∈ 𝒁

2. Along the path, we have collider 𝑋 ∼ ⋯ → 𝑊 ← ⋯ ∼ 𝑌,
where W and its descendants are not in 𝒁

• 𝒁 could be the empty set

• We write as 𝑋 ⫫G 𝑌 | 𝒁
• Notion generalizes to sets 𝑿 and 𝒀

Common causality assumptions

• Markov assumption
𝑋 ⫫G 𝑌 | 𝑍 ⇒ 𝑋 ⫫P 𝑌 | 𝑍

• Faithfulness
𝑋 ⫫G 𝑌 | 𝑍 ⇐ 𝑋 ⫫P 𝑌 | 𝑍

“If d-separated in graph, then conditionally independent in data”

“If conditionally independent in data, then d-separated in graph”

Common causality assumptions

• Faithfulness
𝑋 ⫫G 𝑌 | 𝑍 ⇐ 𝑋 ⫫P 𝑌 | 𝑍

• No “cancellations” in the distribution
• Toy example (ignoring noise terms):

X1

X4

X2 X3

SEM: 𝑋# = 𝑎 𝑋"
𝑋$ = 𝑏 𝑋"
𝑋% = 𝑐 𝑋# + 𝑑 𝑋$ = 𝑎𝑐 + 𝑏𝑑 𝑋"

Consider	scenario	where	red and	blue paths	“cancel	out”
If	𝑎𝑐 = −𝑏𝑑,	then	𝑋% = 0 always,	and	we	have	X" ⫫P 𝑋%
If	faithfulness	holds,	then	the	DAG	should	show	X" ⫫G 𝑋%
But	X" and	𝑋% not d-separated	in	this	DAG
So,	faithfulness	violated	when	𝑎𝑐 = −𝑏𝑑

Common causality assumptions

Shark
attacks

Ice-cream
sales

Common causality assumptions

Shark
attacks

Ice-cream
sales

https://thenounproject.com/icon/politician-3189333/
https://thenounproject.com/icon/evil-businessman-with-money-2758402/
https://thenounproject.com/icon/shark-4022671/

Release the
sharks!!!

Ban ice-
cream
sales!!

https://thenounproject.com/icon/politician-3189333/
https://thenounproject.com/icon/evil-businessman-with-money-2758402/
https://thenounproject.com/icon/shark-4022671/

Common causality assumptions

• Causal sufficiency
• No unobserved confounders / common cause

Season

Ice-cream
sales

Shark
attacks

When warm weather, more people buy ice-cream, and more people go to beaches

PC algorithm [Spirtes, Glymour, Scheines, Heckerman 2000]

• A classic constraint-based method for causal graph discovery
• Steps

1. Identify skeleton
• Start with complete undirected graph
• Remove edges 𝑋 ∼ 𝑌 when 𝑋 ⫫ 𝑌 | 𝑍 for conditioning set Z from
∅, {𝑥$}, … , {𝑥%}, {𝑥$, 𝑥&}, … , {𝑥%'$, 𝑥%}, … , {𝑥$, … , 𝑥%}

2. Identify v-structures
• Consider any path 𝑋 ∼ 𝑌 ∼ 𝑍 without 𝑋 ∼ 𝑍
• If Y was not used to remove edge 𝑋 ∼ 𝑌 in step 1, then it must be the case

that 𝑋 → 𝑌 ← 𝑍
3. Orient more edges using the discovered v-structures

• Apply Meek rules

• Fact: If we can always correctly determine conditional
independencies, then PC will output 𝐺∗

(See backup slides if time permits)

Key takeaway: With enough samples, we can recover essential graph

PC algorithm [Spirtes, Glymour, Scheines, Heckerman 2000]

• A classic constraint-based method for causal graph discovery
• Steps

1. Identify skeleton
• Start with complete undirected graph
• Remove edges 𝑋 ∼ 𝑌 when 𝑋 ⫫ 𝑌 | 𝑍 for conditioning set Z from
∅, {𝑥$}, … , {𝑥%}, {𝑥$, 𝑥&}, … , {𝑥%'$, 𝑥%}, … , {𝑥$, … , 𝑥%}

2. Identify v-structures
• Consider any path 𝑋 ∼ 𝑌 ∼ 𝑍 without 𝑋 ∼ 𝑍
• If Y was not used to remove edge 𝑋 ∼ 𝑌 in step 1, then it must be the case

that 𝑋 → 𝑌 ← 𝑍
3. Orient more edges using the discovered v-structures

• Apply Meek rules

• Fact: If we can always correctly determine conditional
independencies, then PC will output 𝐺∗

Example: PC algorithm

1. Identify skeleton

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

2. Identify v-structures
𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

X1 X2

X5

X3X4 X6

𝑋" ⫫ 𝑋& | 𝑋$, 𝑋%
𝑋" ⫫ 𝑋' | 𝑋#

𝑋# ⫫ 𝑋% | 𝑋"
𝑋# ⫫ 𝑋& | 𝑋$, 𝑋%

𝑋$ ⫫ 𝑋' | 𝑋#

𝑋% ⫫ 𝑋' | 𝑋" or 𝑋% ⫫ 𝑋' | 𝑋#

𝑋& ⫫ 𝑋' | 𝑋#

X1 X2

X5

X3X4 X6

2. Identify v-structures

Look at all triples 𝐴 ∼ 𝐵 ∼ 𝐶 and 𝐴 ≁ 𝐶
If 𝐶 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡(𝐴, 𝐵), then 𝐴 → 𝐵 ← 𝐶

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3
Meek R1

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3
Meek R1

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3
Meek R1
Meek R2

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3
Meek R1
Meek R2

𝐺∗

Example: PC algorithm

3. Orient using Meek rules

X1 X2

X5

X3X4 X6

X1 X2

X5

X3X4 X6

Meek R3
Meek R1
Meek R2

Output of PC: Essential graph of 𝐺∗

𝐺∗

